Brief Reports

LITERATURE CITED

- 1. H.A. Diapoulis, "Helliniki-Chloris," Vol. B2, Athens 1948, p. 112.
- 2. D. Kavvadas, "Lexicon-Botanikon," Vol. VI, Athens 1956, p. 1732.
- 3. C. Souleles and G. Shammas, in press.
- 4. P. Fournier, "Le livre des plantes médicinales et vénéneuses de France," Vol. I, Paris 1948, p. 274.
- "Sélection du Reader's Digest, Secrets et vertus des plantes médicinales," Paris, Bruxelles, Montréal, Zurich 1977, p. 91.
- 6. H.L. De Pooter et al., Phytochemistry, 25, 691 (1986).
- 7. F.W. Hefendehl, Phytochemistry, 9, 1985 (1970).

Received 22 May 1985

FLAVONOIDS OF CUPRESSUS SEMPERVIRENS AND CUPRESSUS CASHMERIANA

M. KHABIR, FEHMEEDA KHATOON, and W.H. ANSARI*

Department of Chemistry, Aligarh Muslim University, Aligarh 202001, India

The genus *Cupressus* (Cupressaceae), comprising 12 species, is distributed in the Mediterranean region, tropical Asia, and North America (1). A survey of the literature shows that three biflavonoids amentoflavone, cupressuflavone, and 4^m-mono-0-methyl amentoflavone (podocarpusflavone-A)—have been reported in *Cupressus sempervirens* var. sempervirens and var. stricta Ait. (2,3), but no flavonoid glycosides are known in any *Cupressus sempervirens* var. sempervirens and var. stricta Ait. (2,3), but no flavonoid glycosides are known in any *Cupressus species*. The present paper describes the isolation and characterization of a flavonol glycoside, quercetin-3-0- α -L-rhamnopyranoside, along with quercetin, hinokiflavone, isocryptomerin, and reported biflavonoids from the leaf extracts of *Cupressus sempervirens* var. borizontalis (Mill.) Gordon. The chemical analysis of the leaf extracts of *Cupressus cashmeriana* Royle Carriere resulted in the isolation of a flavonol diglycoside, quercetin-3-0-(6^m-0- α -L-rhamnopyranosyl)- β -D-glucopyranoside together with amentoflavone, cupressuflavone, hinokiflavone, 7-0-methyl amentoflavone (sequoiaflavone), and isocryptomerin. No flavone aglycones were detected. Sequoiaflavone was found to be present only in this species while others contained podocarpusflavone-A. The presence of a flavonol diglycoside is, thus, reported in the Cupressaceae; this type of compound may serve as a useful taxonomic marker.

EXPERIMENTAL

PLANT MATERIALS.—*C. sempervirens* var. *borizontalis* was collected from Munger, Bihar, and *C. cashmeriana* from the Forest Research Institute, Dehra Dun, UP, India. These were identified by N. Bahadur, Officer-in-Charge, Systematic Botany Branch, F.R.I. Dehra Dun. Voucher specimens are deposited there in the Herbarium.

EXTRACTION AND ISOLATION OF FLAVONOIDS.—MeOH extracts of air-dried and powdered leaves (4 kg in each case) were concentrated in vacuo and treated successively with *n*-hexane, C_6H_6 , and CHCl₃. The residue was then poured into H_2O and filtered. The filtrate was extracted with *n*-BuOH, concentrated under reduced pressure, and purified by cc (Si gel, CHCl₃-MeOH, 4:1) followed by pc (Whatman No. 3, *n*-BuOH-HOAc- H_2O , 4:1:5) to yield quercetin-3-0- α -L-rhamnopyranoside (300 mg) from *C. semperivirens* and quercetin-3-0- $(6''-0-\alpha$ -L-rhamnopyranosyl)- β -D-glucopyranoside (500 mg) from *C. cashmeriana*. These were characterized by chromatographic and hydrolytic studies, ¹H-nmr spectral studies of their acetates, and uv spectral shift data of the glycosides as well as the aglycones of permethylated glycosides (4). The latter glycoside was further clarified by ¹³C-nmr data.

The dark brown precipitate on successive column chromatography (Si gel, $C_6H_6/EtOAc$) and tlc (Si gel, BDH, C_6H_6 -pyridine-formic acid, 36:9:5) yielded quercetin (150 mg), amentoflavone (300 mg), cupressuflavone (200 mg), hinokiflavone (180 mg), podocarpusflavone-A (130 mg), and isocryptomerin (120 mg) from *C. sempervirens* var. *borizontalis* and amentoflavone, cupressuflavone, hinokiflavone, sequoiaflavone (140 mg), and isocryptomerin from *C. cashmeriana*. These were identified by comparison of ¹H-nmr spectral data of their acetates, the characteristic fluorescence in uv light of their permethyl ethers, Rf, mp, and mmp with authentic samples (5-7).

Full details of the isolation and identification of the compounds are available on request to the senior author.

ACKNOWLEDGMENTS

M.K. is thankful to CSIR (New Delhi) for an SRF award.

LITERATURE CITED

- 1. "The Wealth of India," vol. II. CSIR, New Delhi, 1956, p. 86.
- 2. S. Natarajan, V.V.S. Murti, and T.R. Seshadri, Phytochemistry, 9, 575 (1970).
- 3. P.A. Gadek and C.J. Quinn, Phytochemistry, 24, 267 (1985) and references therein.
- T.J. Mabry, K.R. Markham, and M.B. Thomas, "The Systematic Identification of Flavonoids," Springer-Verlag, New York, 1970, p. 52.
- 5. K.K. Chexal, B.K. Handa, and W. Rahman, J. Chromatogr., 48, 484 (1970).
- 6. A. Pelter, R. Warren, K.K. Chexal, B.K. Handa, and W. Rahman, Tetrabedron, 27, 1625 (1971).
- 7. N. Hameed, M. Ilyas, W. Rahman, and N. Kawano, Phytochemistry, 12, 1497 (1973).

Received 21 October 1985

POLYPHENOLS ISOLATED FROM PTEROCAULON PURPURASCENS, I. 6-HYDROXYFLAVONOIDS

S.L. DEBENEDETTI, E.L. NADINIC, M.A. GOMEZ, and J.D. COUSSIO

Instituto de Química y Metabolismo del Fármaco, CONICET, Cátedra de Farmacognosia, Departamento de Farmacología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, 1113 Buenos Aires, Argentina

The genus *Pterocaulon* is widely distributed in northeastern Argentina, southern Brazil, and Paraguay. Various species are used in folk medicine for various applications, as an insecticide and as an agent against snake bites (1-4). In previous papers we described the caffeoylquinic acid content from *Pterocaulon virgatum* DC. (5) and *Pterocaulon purpurascens* Malmé (6) and the isolation of coumarins (7) and flavonoids (8,9) from *P. virgatum*. Continuing our study of the Argentine Compositae with medicinal uses, we now report the isolation and identification of flavonoids from the CH₂Cl₂ extract of *P. purpurascens*. Six flavonoids were isolated and identified as quercetin, isorhamnetin, and the quercetagetin methyl ethers: quercetagetin-3,7,4'-trimethyl ether (10), quercetagetin-3,7-dimethyl ether (11), quercetagetin-3,3'dimethyl ether (12), and quercetagetin-3,7-dimethyl ether (11). We give further information of the mass spectra which is not detailed in the current literature.

EXPERIMENTAL

PLANT MATERIAL.—Aerial parts of *P. purpurascens* were collected from Chaco, Argentina, in 1983. The herbarium specimens are deposited at the Museo de Botánica "Juan A. Dominguez," Facultad de Farmacia y Bioquímica, U.B.A. (Schultz 1024).

EXTRACTION AND ISOLATION.—Dried and powdered plant material (800 g) was extracted by standard methods, first with petroleum ether (60-80°) and then with CH_2Cl_2 . The extracts were concentrated in vacuo to dryness. The CH_2Cl_2 extract (7.52 g) was chromatographed over Polyclar, and the column was eluted with a CH_2Cl_2/C_6H_6 gradient up to 100% CH_2Cl_2 and then with a $CH_2Cl_2/MeOH$ gradient to 100% MeOH. The column fractions gave a mixture of flavonoids that was separated on preparative paper chromatography with 40% HOAc. All the isolated flavonoids were purified on a Sephadex LH20 column eluted with CH_2Cl_2 -MeOH (9:1) prior to spectral analysis.

IDENTIFICATION AND SPECTRAL DATA.—The spectra were recorded as follows: uv, Shimadzu model UV-240; ¹H nmr, Perkin-Elmer R12 80 MHz; eims, Varian Mat2 data system 166. The quercetagetin derivatives were identified by their uv and mass spectra. The uv spectra (MeOH) showed peaks and shoulders in Band II corresponding to a dioxygenated B-ring (13), but they also exhibited a shoulder at 238-245 nm which, in our experience, is present in all the flavonoids derived from the 6-hydroxyquercetin and 6-hydroxyluteolin structures. The presence of this substitution was confirmed by the bathochromic shift of Band I of about 30 nm in AlCl₃/HCl (14).